高三数学教学计划

时间:2025-04-14 19:40:20
高三数学教学计划(15篇)

高三数学教学计划(15篇)

时间就如同白驹过隙般的流逝,我们的工作又将在忙碌中充实着,在喜悦中收获着,此时此刻我们需要开始做一个计划。那么你真正懂得怎么制定计划吗?下面是小编帮大家整理的高三数学教学计划,希望能够帮助到大家。

高三数学教学计划1

1.、研究高考大纲与试题,明确高考方向,有的放矢

对照《考试大纲》理清考点,每个考点的要求属于哪个层次;如何运用这些考点解题,为了理清联系,可以画出知识网络图。

2.、仍旧注重基础

解题思路是建立在扎实的基础知识条件上的,再难的题目也无非是基础知识的综合或变式。复习过程中,一定要吃透每一个基本概念,对于课本上给出的定理的证明,公式的推导,重点掌握。

3.、针对典型问题进行小专题复习

小专题复习要依据高考方向,研究近几年出题考点和题型,针对实际练习考试中出现的某一类问题,可在老师或者课外辅导的帮助下,总结类型并针对练习,这种方法一般时间短、效率高、针对性好、实用性强。

4、 注意方法总结、强化数学思想,强化通法通解

我们可以把数学思想方法分类,更好的指导我们的学习。一是具体操作方法,解题直接用的,比如说常见的换元法,数列求和的裂项、错位相减法,特殊值法等;二是逻辑推理法,比如证明题所用的综合法、分析法、反证法等;三是宏观指导意义的数学思想方法,比如数形结合、分类讨论、化归转化等。我们把这些思想方法不断的渗透到平时的学习中和做题中,能力会在无形中得到提高的。

5、 针对实际情况,有效学习

对于基础不太好的,可以重点抓选择前8个、填空前2个、解答题前3个以及后面题的第一问;基础不错的,可以适当关注与高等数学相关的中学数学问题。

6、 培养应试技巧,提高得分能力

考试时要学会认真审题,把握好做题速度,碰到不会的题要学会舍弃,有失才有得,回过头来再看之前的题,许多时候会有豁然开朗的感觉。

高三数学教学计划2

外因可起重要作用,但它必须通过内因才能起作用。

只有学生主动起来,对每一堂课都有一种需求的心态走进来,才有可能真正取得提高,那么如何引导学生在复习中不只是跟在后面,而是走到前面呢?我的对策是在调动学生学习积极性提高他们的学习兴趣的同时,帮助他们养成在课前几分钟自觉地对本堂课的要点进行梳理的习惯,或者把本堂课的要点梳理设计成练习,课前发给他们,或者利用多媒体投影仪展示,让他们去回顾、思考,可以说课前对基础知识的梳理与强化是学习的生命。

一些基础相对较好或思维较快但比较粗糙的同学,往往眼高手低,喜欢看看题目,稍微动动笔,答案一写了事。

尤其我们(9)班学生多数有这个毛病。

加强分析思考,这本身是件好事,但过了头,就成了坏事。

平时解题只是写个简单答案,不注意解题步骤和过程的规范,导致的结果就是一些细节地方考虑不周全,考试中扣分过多,甚至碰到很熟悉的题目,考试中没了思路。

所以我们的对策是同学们平时的练习和作业中必须要有完整的书写步骤,提高表达水平。

高考中,只有把你的思维通过解答完整反映到卷面上,阅卷老师才有给满分的可能。

只埋头拉车,不抬头看路。

高考复习资料五花八门,这些同学在复习中埋头苦练,拼命做题,往往是事倍功半。

我们觉得在复习中应边练边想,必要的训练是必不可少的,不要搞题海战术,而要强化自我总结,教学工作计划《高三数学教学与复习计划-》。

学习数学离不开做题,但要精,并在做题后要认真反思、分析,总结出一些问题的规律,并找出自己存在的问题,真正掌握解题的思维方式,内化为自己的能力。

努力争取达到做一题,得一法,会一类,通一片的收获。

抓基础知识和基本技能,抓数学的通性通法,即教材与课程目标中要求我们把握的数学对象的基本性质,处理数学问题基本的、常用的数学思想方法,如归纳、演绎、分析、综合、分类讨论、数形结合等。

提高学生的思维品质,以不变应万变,使数学学科的复习更加高效优质。

研究《课程标准》和《教材》,既要关心《课程标准》中调整的内容及变化的要求,又要重视今年数学不同版本《考试说明》的比较。

结合上一年的新课改区高考数学评价报告,对《课程标准》进行横向和纵向的分析,探求命题的变化规律。

1、高考平均分力求达90分;2、解决优生的数学“缺腿”问题;3、培养尖子生突破“120分”.根据以上分析我提出第一轮教学和复习建议:(一)同备课组老师之间加强研究1、研究《课程标准》、参照周边省份20xx年《考试说明》,明确复习教学要求。

2、研究高中数学教材。

处理好几种关系:课标、考纲与教材的关系;教材与教辅资料的关系;重视基础知识与培养能力的关系。

3、研究08年新课程地区高考试题,把握考试趋势。

特别是山东卷、全国卷、上海卷以及广东、江苏、海南、宁夏等课改地区的试卷。

4、研究高考信息,关注考试动向。

及时了解09高考动态,适时调整复习方案。

5、研究本校数学教学情况、尤其是本届高三学生的学情。

有的放矢地制订切实可行的校本复习教学计划。

(二)重视课本,夯实基础,建立良好知识结构和认知结构体系课本是考试内容的载体,是高考命题的依据,也是学生智能的生长点,是最有参考价值的资料。

只有吃透课本上的例题、习题,才能全面、系统地掌握基础知、基本技能和基本方法,构建数学的知识网络,以不变应万变。

在求活、求新、求变的命题的指导思想下,高考数学试题虽然不可能考查单纯背诵、记忆的内容,也不会考查课本上的原题,但对高考试卷进行分析就不难发现,许多题目都能在课本上找到“影子”,不少高考题就是将课本题目进行引申、拓宽和变化,高考试题千变万化,异彩纷呈,但无论怎样变化、创新,都是基本数学问题的组合。

所以,对基本数学问题的认识,基本数学问题解法模式的研究,基本问题所涉及的数学知识、技能、思想方法的理解,乃是数学复习课的重心。

多年的教学实践,使我们深刻体会到:基础题、中档题不需要题海,高档题题海也是不能解决的。

在第一轮复习中,切忌“高起点、高强度、高要求”,所谓“居高临下”,往往投入很大,收效甚微,甚至使学生丧失学习数学的兴趣和信心。

要引导学生重视基础,切实抓好“三基”(基础知识、基本技能、基本方法)。

最基础的知识是最有用的知识,最基本的方法是最有用的方法。

在复习过程中自觉地将新知识及时纳入已有的知识系统中去,融代数、三角、立几、解几于一体,进而形成一个条理化、有序化、 ……此处隐藏29725个字……/p>

2.学法

引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

用多种方法对等差数列的通项公式进行推导。

在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

【教学过程】

教学内容问题预设师生互动预设意图

创设情景,提出问题

问题提出:

1。从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

2。水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2。5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

3。我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息。按照单利计算本利和的公式是:本利和=本金×(1+利率×存期)。按活期存入10 000元钱,年利率是0。72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

教师:以上三个问题中的数蕴涵着三列数。

学生:

1:0,5,10,15,20,25,…。

2:18,15。5,13,10。5,8,5。5。

3:10072,10144,10216,10288,10360。

从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型。通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力。

观察归纳,形成定义

①0,5,10,15,20,25,…。

②18,15。5,13,10。5,8,5。5。

③10072,10144,10216,10288,10360。

思考1上述数列有什么共同特点?

思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

思考3你能将上述的文字语言转换成数学符号语言吗?

教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念。

学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定。

教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义。

通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达。

举一反三,理解定义

练一练:判定下列数列是否为等差数列?若是,指出公差d。

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,—1,—2;

(4)4,7,10,13,16。

思考4设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

教师出示题目,学生思考回答。教师订正并强调求公差应注意的问题。

注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 。

强化学生对等差数列“等差”特征的理解和应用。

思考5已知等差数列:

8,5,2,…,求第200项?

思考6已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示。根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会递推思想;让学生初步尝试处理数列问题的常用方法。

引导学生观察、归纳、猜想,培养学生合理的推理能力。学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识。鼓励学生自主解答,培养学生运算能力。

理解通项,简单应用

变1判断—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?

变2在等差数列{an}中,已知a5=10,a12=31, 求a1,d和an。

变3某市出租车的计价标准为1。2元/km,起步价为10元,即最初的4km(不含4千米)计费10元。如果某人乘坐该市的出租车去往14km处的目的地,且一路畅通,等候时间为0,需要支付多少车费?

教师:给出问题,让学生自己操练,教师巡视学生答题情况。

学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式。

主要是熟悉公式,使学生从中体会公式与方程之间的联系。初步认识“基本量法”求解等差数列问题。

课堂小结,课外作业

1。一个定义:

等差数列的定义

2。一个公式:

等差数列的通项公式

3。二个应用:

定义和通项公式的应用

教师:让学生思考整理,找几个代表发言,最后教师给出小结内容,并适当解析。

教师展示作业:

P39练习:2,3。

P40习题2。2A组:1,4。

引导学生去联想这一概念所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念。

【设计反思】

1。本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣。在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力。

2。本课各环节的设计环环相扣、简洁明了、重点突出,引导分析细致、到位、适度。如:判断某数列是否成等差数列,这是促进概念理解的好素材;此外,用方程的思想指导等差数列基本量的运算等等。学生在经历过程中,加深了对概念的理解和巩固。

3。本节课教学体现了课堂教学从“灌输式”到“引导发现式”的转变,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率。

4。本人认为在概念教学中多花一些时间是值得的,因为只有理解掌握了概念,才能更好地帮助学生落实“双基”,更好地帮助学生认识数学,认识数学的思想和本质,进一步地发展学生的思维,提高学生的解题能力。

《高三数学教学计划(15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式